Some notes on Extensive form Representations and Subgame Perfect equilibrium

Reference These noies assume that students have a reasonably geod idea about
normal form representations. The students should read Chapter 1 of Gibbons to
clarify thoughts on normal form games. 'The following notes have been written
as an introduction to the general theory and should be read along with any good
basic game theory text. Personally, 1 feel that Section 2.4 (pp 115-129) of Gibbons
complement these notes nicely and 1 recommend strongly that you go through this

section carefully.

By now, you know the normal form representation of o game (also called the ‘strate-
gic form’) - each playver simultaneously {importantly without the knowledge of other
players” moves) chooses & strategy and the combination of strategies chesen by the
players determines a payoll for each player. Typically, the normal form of a game is
written as a payofl matrix and represents a static situation. However, all strategic
interactions do not oecr simultaneously. There is often some element of sequential-
ity in the order of moves hy different players. Further, when the timing is sequential,
ghe player moving later has information about has happened in the game before his
move. All these issues of timing and information relating fo sequentiality is much
better captured in a game tree - this is what is also called an extensive form repre-
sentation. Often, games involving a sequential structure are called dynoniic games.

Nevertheless, it should be pointed out that we don’t want to have different uncon-
nected theories for ‘normal form representation’ and ‘extensive form representations’
of stralegic situations. Ideally, every strategic inferaction must have a ‘normal form’
as well as an ‘extensive form’ representation such that we can jump from one to the
other with ease. Indeed the theory achieves this generalization by making some re-
strictions (intuitively appealing ones) on representation of information in game trees
{through "information sets'} and treating the definition of ‘strategy’ with care, Anal-
ysis of extensive fonm games are made through studying allowable subtrees (called
‘subgamaes’).

1. Example of a PD

We will start devecloping the ideas through some simple examples. Consider the
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The tree (inverted) on the right hand side above is an extensive form representa-
tion of the situation. It consists of nodes and branches and has the terminal payofls
at the bottom of the branches. A node s a decision point for a player where the
player hias to make a move; every noede has a player in charge of the node. Above
vight, the filled circles at the start of every braneh denote a node. The branches
coming ouf from a node represent the different actions choices for the player who is
in charge of the node. This free captures simultaneity in the following way. Player
1 moves first (in moving first, lie/she does not know what player 2 will play later)
at the top node by cheoosing the € branch or the D branch. This is followed by
two nodes (depending on player 1's choice) at eacly of which player 2 has to make a
choice between ¢ and D. Note that these two nodes of 2 are encapsulated inn a chain
{in the figure) - we call this an ‘information set’- the player in charge of the nodes of
an information set cannot distinguish between these nodes (here this completes the
capiure of simultancity). Implicitly, if two or more nodes belong to an information
set, then it is the same player who is in charge of all these nodes. Furthermore, in
any preparation (strategy) to play the game the player must choose identical actions
at each of these nodes - different action choices at different nedes in an information
set would indicate that the plaver can distinguish between these nodes; we don’s

allow this distinction for an information set! . Consequently, player 2 has two pure

PWhon a player can distingnish a node perfectly (Lermed as porfect information), we soinctimes



strategies C and I at the information set. Player 1 also has 2 strategies C and [
We formally define Information Sets.
Definition 1. An information set is o collection of decision nodes such that

{a) the same ployer 1s in charge of all these nodes, and

(0} of the play of the geme reaches a node in this collection, the player does not

know which node has been reached.

Note that condition (b} implies that the player must have the same set of action
choices at each node in her information set; otherwise she could distinguish (at least
partially) between the nodes.

Coing back te our PD example, note that an equally persuasive tree capiuring
all these details is the following., Player 1's payofts are followed by player 2’s payoffs
in the pavofl entries. This shows that the same strategic situation can sometimes be

represented by more than one extensive i’qé'm ganie,

2, Example of a Sequentially played D
Now, we take a sequential version of the PD with player 1 moving before player
2 (technically speaking, this is no longer a PD}. Before making her move player 2
knows what player 1 have done. The unique extensive form representation is given

bhelow.

call this node as a singleton {with only clement} information set. Trivially, if there is only node in

an information set, the player cannot confuse it with any other node in the information sct.
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Extensive form for sequential PD

In this extensive form, plaver 2 does not have an informafion set containing two
nodes - playing second, she can distinguish between her two nodes. It is inferesting
how this fact translates into player 2's possible strategies.

Important In game theory, it is convenient to think that players’ think about all
distinguishable contingencies that can arise? in the game before actually playing
the game. Next, cach plaver submits a strategy. A strategy for a player is a
complete preparation for all distinguishable contingencies that the player
may face while playing the game. A player’s strategy should prescribe for each
contingency an action that the player will take if that contingency ever comes up in
the course of the game's play. Once each plaver have submitted his/her strategy, the
players take a back seat and the submitted strategies fight each other out. The inter-
action of the strategies produce an ‘outcome path’ - which tells what happens when
the game is played out. To caleulate the resulting pavoffs when strategies interact,
one has to chart the ‘outcome path’ that the strategies produce, and then read the
terminal payoffs following this onteome path frem the extensive forin representation.
Of course, strategies should be Judiciously submitted and that is the whole point of
ecuilibriuvm analvsis,

Before trying an analysis on what makes judicious choice of strategies, let us

tally the strategies for cach player in the sequentially played PI). Player 1 has 1

2] . . . S P . .
“As long as a player can distinguish between bwo different nodes, these ave different contingencies.

This also means thal an information sei with two or more nodes is one contingency.



contingency (at the top node) where he canr choose any of 2 actions; so, ¢ and D
are the two possible strategies. Player 2 has 2 contingencies - the lelt and the right
node. C'D is a possible strategy for player 2 where C is what she will play at the
left contingency and D is what she will play at the right contingency. Similariy, CC,
DC and DD are the three other strategies that player 2 can have®. When strategy
C of player 1 meets strategy C'0 of player 2, the outcome is € of player 2 followed
by ' of player 2 with payoffs 10,10, Similarly when strategy D of player 1 meets
strategy CD of player 2, the outcome path is D of player 1 followed by 1D of player
2 with payoffs 1,1, The normal form of this sequential game is as follows with the
only Nash equilibrium heing (D, D12} with payvoff 1,1

layver 2
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However, apart from expressing a strategic situation in both an extensive form
as well as a normal form representation, another important advantage in studying
extensive [orm representations is that it allows us a much richer analytical tool than
a Nash equilibrium. What strategies are judicious in the sequential version of the
PDY The normal form tells us that (2. DD) looks a good analytical prescription.

What would an analysis on the extensive form tell us?

31 am waldng the assumption that the first leteer is the action she will play at the left node and

the second lelter is the action she will play at the right node.
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Analvsis of Extensive form of sequential PD

Since players think ahead rationally before playing the game, player 2 would move
D) if she 15 is ever to move in her left node (and get 15 instead of 10). Similarly, player
2 would move D il ever she had to move in her vight node {and get 1 instead of -7).
Both these choices are pointed with arrows. DD appears to be the logical strategy
for player 2. Since player 1 is also rational, he can think ahead and decide what is
best for him. If he plays €, he gets -7 (as this would be followed by I3 by 2) while if
he plays D, he pets 1 (this would also be followed by D by 2). Player 1 should choose
. The strategy combination (12, DD) looks the logical conclugion. What we have
just done is find out the subgame perfect equilibrivom of the game (this is also the
hackward induction cutcome). Before clarifying the meaning of the term ‘subgane
perfect equilibriuny’, let us note that the same strategy combination (D, DD) is the
logical outcome (Nash equilibrivm) in the novmal form game. This is an accident.
To see why let us consiler the sequential version of the following Battle of the Sexes

game,

3. Example of a Sequentially played Battle of the Sexes (BOS)

Let us write a sinmltancous Battle of the Sexes game Hrst.
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Extensive form BOS

Check that the extensive form corresponds to the normal form representation of

the story. However, our focus is on the sequential version of the story where the

husband moves first followed by the wife where the wife sees the husband's move.

The extensive form of this modified game (with the arrows of ‘looking ahead and

thinking back’ thrown in) is as follows.

Analysis of Exten. Fonn of Sequential BOS

Check wly the subgare perfect strategy combination is {9, §B) {where we make

the assumption that in the wife's strategy the fivst letter is what she does on the lefi

node and so on). The normal form representation of this sequential game is
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Normal form of sequential BOS

The three circled entries are the Nash equilibria. In terms of strategy configura-
tions, they are {5, 95), {8, B13) and (5.58). Check that the first 2 fail to satisfy
the conditions of thinking ahead and looking back (e.g. in the first Nash eq. the
wife is supposed to play S in the right hand node. Sequential rationality {from the
extensive form game) telis us that she will never do this.

What we have shown in the above example is that the concept of Nash equilibrium
is not complete in sequential games as many equilibria maybe non-credible.

It is now time to bring out the definition and purpose of subgame perfection more
svstematically. Il players are rational {can think ahead and fathom all complexi-
ties), not only do we want plavers to play a best response to each other’s strategies
{Nash equilibrium), we would like to give players the opportunity to reevaluate their
strategies at every future node that they can distinguish - this is where the strategy
combination (5,85} failed to be stable as playver 2 would not play S in her right
side node {a node she can distinguish). For equilibrium stability, we now insist that
in any node in the game which does not belong to an information set with two or
more nodes {the player has no confusion of where she is), the plaver's future strat-
agy [rom this point on must be a best response to the truncations {from the original
strategies} of other players’ strategios from this point on. And this must happen for
all players at all such distinguishable nodes. Rephrasing, we call the rest of the tree

following a distinguishable node (singleton information set) as a ‘subgame’ and insisé



that players play a Nash Equilibrium in all such subgames. This gives us Subgame

Perfact. Nash Equilibrium.

Definition 2.1 A subgame in an extensive form game is o sub-tree which

(e) starts at o singleton information sci.

(b) includes all decision nodes and terminal payoffs of the original tree following
this node, and

(¢} does not cut any information set of the extensive form represeniation of the
original game.

Note that this requirements imply that for the extensive form representation of
the simultaneous P, none of the subtrees in ovals below (I have not labeled the

actions and the terminal payoffs) are subgames.

Violates {a) Violates (1y) Violates {c)
Subtrees in ovals are not subgames

So, for simuitancous games like the PD and the original Battle of the Sexes game,

the only subgame is the whole game.

tibrium if the truncations of the players’ strategies constitute a Nash equilibrium for

every subgome,

“Dy definition differs a lilde from the definition in Gibbons - in requirement {a), he excludes the
game’s first decision node. T don’t make this exclusion. Later, he defines a subgame perfect Nash
cquilibrium 1o be a Nash equilibrivm of the whole game where the trancated strategios continue
to be Nasl equilibrinm in every subgame. His insistence on starting with e Nash equilibrivm for
the whole game cnsures that in the subgaine (according to my definition) which starts at the frst
decision node, the sirategies are a Nash equilibvivm, Effectively, the two ‘subgame perfeet Nash

cquilibrinmm” definitions become identical,



50, for simultanecus games like the PD and the original Battle of the Sexes game,
the only subgame perfect Nash equilibria are the Nash equilibria for the whole game.

Wlhy does subgaine perfection {defined) reduce to backward induction (thinking
ahead and looking back) in finite gawes (games with a finite number of players
which have a finite number of subgames)? The answer lies in the requirement of
an equilibrium and the nature of trees and subgames. Subgames have a natural
nested structure - smaller subgames sit inside larger subgames and so on. And we
want a property (equilibriuin o every subgame) to hold right through these nested
orderings. The smallest subgames {the furthest from the start of the game) oceur
right at the end of these nestings with no more subgames nested in them - it ig
easiest to build the strategies satisfving owr property from this end. So we start at
the back, check strategies satislving the property in these smallest subgames, fold
these fulfilling strategies back into the next layer of subgames and so on until we
reach the whole game.

For infinite games (like the infinite vepetition of the the PD), there is no last
subgames to start backward induction. Nevertheless, the definition of Sub game
porfeet Nash equilibrhun contiinie to hold - the way to find them becomes different;

we have to locate natural recursions in the problem to calculate the equilibria.
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4, Existence of Subgame Perfect Equilibrium

Proposition 1. Every finile game with perfect recall has at least one subgame perfect
equilibrium.

Proof. Let G be a finite game with perfect recall. Let n be the number of nodes in T\Xq of G.
We will apply mathematical induction on n. We first consider the case with n= 1. According to

Nash Theorem, G has a Nash equilibrium. Because n = 1, G is the only subgame of itself. Thus
this NE is also an SPNE of G.

Now assume that our conclusion is true for all n < K. Consider any game G with n = K. If G has
no proper subgame, then the existence of an NE implies the existence of an SPNE. Therefore
we may assume that G has a proper subgame G, If (' still has a proper subgame G", we
consider G" instead of G3', ..., and so on. Thus, we can finally obtain a proper subgame G* of G
such that G° itseif has no proper subgame. By Nash Theorem, G° has an NE in behavior
strategies with some payoff vector v. We now construct a new game I, which is the same as G,
except that G is replaced by a terminal node with the payoff vector v. Obviously the number of
non-terminal nodes in I is less than K. Thus by the induction assumption, I" has an SPNE in
behavior strategics. Now define the behavior strategy of every player in G by combining his
choices in I and in G°. We will show that these strategies form an SPNE ¢* of G.

We first argue that o is an NE of G. If not, then some player i can make an improvement by
playing some sl instead of o* while all the others play their part in o*®. Compare those
components of sf consisting the choices in G° with the corresponding components of o*i, If
they are different, we can change these components of st into those in o1 without reducing i's
payoff. {Otherwise o* restricted to G* will not give an NE of G") Therefore, without loss of
generality, we may assume that sl and o*l are different in some components not related to his
choices in G'. But then, s! restricted to 1" also give an improvement for i when it is compared
with o*1. We thus have a contradiction, Therefore 6* must be an NE of G.

To see that o* is subgame perfect, consider any subgame G' of G. If & is not a subgame of G,
then (' is a subgame of I, In this case, obviously o* gives an NE of G'. Now assume that G is
a subgame of G'. Let I" be the new game which is the same as G’ except that G is replaced by a
terminal node with the payoff vector v. Obviously o* gives an NE for [, In an argument
similar to that given in the last paragraph, one can show that ¢* induces an NE of G'.

5. A game G is said to be with perfect information, if every information set s a singleton, i.e.
consisting of a single node. For a game with perfect information, the succesive process of
replacing a final stage one-person subgame by a terminal node with one payoff vector
corresponding to this person's optimal choice in this subgame is called backward induction. It
is not difficult to establish the following

Proposition 2. A game with perfect information always has a subgame perfect equilibrium n
pure strategies, and any pure strategy subgame perfeet equilibrium of it can be computed by

backward induction algorithm.

The proof of this proposition is similar to that of Proposition 1, and we omit it.



