
II Mathematical Tools (Dynamic Optimization

(I) Introduction to Dynamic Optimization

1 Examples of Dynamic Optimization Problems

• A Discrete-Variable Example

• A Continuous-Variable Example

2 Forms of Dynamic Optimization Problems

2.1 Forms of Objective Functional

• Standard form: V [y] =
∫ T
0 F [t, y(t), y′(t)]dt

• Terminal-Control Problem (Problem of Mayer): V [y] = G[T, y(T )]

• Problem of Bolza: V [y] =
∫ T
0 F [t, y(t), y′(t)]dt + G[T, y(T )]

2.2 Types of Terminal Points

• Fixed-Terminal-Point Problem: both T and Z are fixed

• Fixed-Time (Vertical-Terminal-Line) Problem: T is fixed, but Z

is free

• Fixed-Endpoint (Horizontal-Terminal-Line) Problem: T is free,

but Z is fixed

• Terminal-Curve Problem: both T and Z are free
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3 Alternative Approaches

• Calculus of Variations

• Dynamic Programming

• Optimal Control Theory

(II) Optimal Control Theory

1 The Maximum Principle

1.1 The Simplest Problem

max V [y] =
∫ T

0
F [t, y, u]dt

s.t. ẏ = f (t, y, u) (Equation of motion)

y(0) = A, y(T ) free (A, T given)

and u(t) ∈ U ∀t ∈ [0, T ]

where y is a state variable and u is a control variable. Note that the

simplest problem is a vertical-terminal-line problem.

1.2 The Maximum Principle (L. S. Pontryagin)

The Hamiltonian function

H(t, y, u, λ) ≡ F (t, y, u) + λ(t)f (t, y, u)

where λ is a costate variable. The maximum principle conditions

max
u

H(t, y, u, λ) ∀t ∈ [0, T ]

ẏ =
∂H

∂λ
(Equation of motion for y)
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λ̇ = −∂H

∂y
(Equation of motion for λ)

λ(T ) = 0 (TVC)

1.3 Alternative Terminal Conditions

• Fixed terminal Point

y(T ) = yT (T, yT given) (TVC)

• Horizontal terminal Line (Fixed-Endpoint Problem)

[H ]t=T = 0

• Terminal Curve

[H − λφ′]t=T = 0 (TVC)

• Truncated Vertical Terminal Line

λ(T ) ≥ 0 y∗T ≤ ymin (yT − ymin)λ(T ) = 0 (TVCs)

• Truncated Horizontal Terminal Line

[H ]t=T ≥ 0 T ∗ ≤ Tmax (T ∗ − Tmax) [H ]t=T = 0 (TVCs)

1.4 The Current-Value Hamiltonian

If F function can be written as F (t, y, u) = G(t, y, u)e−ρt, then we

define the current Hamiltonian function as

Hc ≡ Heρt = G(t, y, u) + m(t)f (t, y, u)
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The revised maximum principle conditions

max
u

Hc ∀t ∈ [0, T ]

ẏ =
∂Hc

∂m
(Equation of motion for y)

ṁ = −∂Hc

∂y
+ ρm (Equation of motion for m)

m(T )e−ρT = 0 (TVC)

The revised TVCs

• Fixed terminal Point

y(T ) = yT (T, yT given) (TVC)

• Horizontal terminal Line (Fixed-Endpoint Problem)

[Hc]t=T e−ρT = 0

• Terminal Curve

[Hc −mφ′]t=T e−ρT = 0 (TVC)

• Truncated Vertical Terminal Line

m(T )e−ρT ≥ 0 y∗T > ymin (yT − ymin)m(T )e−ρT = 0 (TVCs)

• Truncated Horizontal Terminal Line

[Hc]t=T ≥ 0 T ∗ ≤ Tmax (T ∗ − Tmax) [Hc]t=T = 0 (TVCs)
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An example:

max
∫ T

0
e−ρt[c(t)]γdt, 0 < γ < 1

s.t. k̇(t) = A[k(t)]α − c(t), 0 < α < 1

where k(0) and T are given and K(T ) is free.

1.5 Problems with n State Variables and m Control Variables

The optimal control problem

Max V =
∫ T

0
F [t, y1, ..., yn, u1, ..., um]dt

s.t. ẏj = f j(t, y1, ..., yn, u1, ..., um) (Equation of motion)

yj(0) = yj0, yj(T ) = yjT

and ui(t) ∈ Ui (i = 1, ..., m, j = 1, ..., n)

The Hamiltonian function

H ≡ F (t,y,u) + λ′f(t,y,u)

The maximum principle conditions and TVCs

max
u

H

∂H

∂yj
= −λ̇j (j = 1, ...n)

∂H

∂λj
= −ẏj (j = 1, ...n)

[H ]t=T∆T − n∑

j=1
λj(T )∆yjT = 0 (General TVC)
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2 Infinite-Horizon Problem

The optimal control problem

Max V =
∫ ∞
0

F (t, y, u)dt

s.t. ẏ = f (t, y, u)

y(0) = y0, y0 given

2.1 The TVCs (Michel 1982)

lim
t→∞H = 0 (Infinite-horizon TVC)

lim
t→∞λ(t) = 0 (TVC for free terminal state)

2.2 Applications

(A). Optimal Growth (Cass, RES, 1965)

(B). Endogenous Technological Change (Romer, JPE, 1990)

(C). On the Mechanics of Economic Development (Lucas, JME,

1988)
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3 Optimal Control with Constraints

3.1 Types of Constraints

A. Constraints Involving Control Variables

• Equality Constraints

• Inequality Constraints

• Equality Integral Constraints

• Inequality Integral Constraints

B. State-Space Constraints

3.2 First-Order Conditions

• Equality Constraints

max V =
∫ T

0
F (t, y, u1, u2)dt

s.t. ẏ = f (t, y, u1, u2)

g(t, y, u1, u2) = c, c constant

and boundary conditions. Note that the number of constraints

constraints should be smaller than the number of control vari-

ables. We construct a Lagrangian function

L = H + θ(t)(c− g)

The first-order conditions are

∂L
∂uj

= 0 ∀t ∈ [0, T ] (j = 1, 2)
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∂L
∂θ

= 0 ∀t ∈ [0, T ]

∂L
∂λ

= ẏ

∂L
∂y

= −λ̇

• Inequality Constraints

max V =
∫ T

0
F (t, y, u1, u2)dt

s.t. ẏ = f (t, y, u1, u2)

gi(t, y, u1, u2) ≤ ci, ci constant

and boundary conditions. Similar to the equality constraint case,

we construct the Lagrangian function

L = F + λf +
2∑

i=1
θi(ci − gi)

Then the first-order conditions are

∂L
∂uj

= 0 ∀t ∈ [0, T ] (j = 1, 2)
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∂L
∂θi

≥ 0 θi ≥ 0 and θi
∂L
∂θi

= 0

(i = 1, 2 and j = 1, 2) ∀t ∈ [0, T ]

∂L
∂λ

= ẏ

∂L
∂y

= −λ̇

• Equality Integral Constraints (Isoperimetric Problems)

max V =
∫ T

0
F (t, y, u)dt

s.t. ẏ = f (t, y, u)

∫ T

0
G(t, y, u)dt = k k constant

and boundary conditions. Define a new state variable

Γ(t) ≡ −
∫ t

0
G(t, y, u)dt,

then

Γ̇ = −G(t, y, u)

with Γ(0) = 0 and Γ(T ) = −k
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Now the optimization problem becomes

max V =
∫ T

0
F (t, y, u)dt

s.t. ẏ = f (t, y, u)

Γ̇ = −G(t, y, u)

and boundary conditions. We construct the following Hamilto-

nian function

H = F (t, y, u) + λf (t, y, u)− µG(t, y, u)

• Inequality Integral Constraints

max V =
∫ T

0
F (t, y, u)dt

s.t. ẏ = f (t, y, u)

∫ T

0
G(t, y, u)dt ≤ k k constant

and boundary conditions. The solution approach is the same as

in the Equality Integral Constraint case. But now the we have a

truncated vertical terminal line problem, where Γ(T ) ≥ −k.
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(III) Dynamic Programming

1 An Example and the Principle of Optimality

1.1 An Example: The Shortest Distance Problem

1.2 The Principle of Optimality

An optimal path has the property that whatever the inital con-

ditions and control values over some inital period, the control

(or decision) variables over the remaining period must be opti-

mal for the remaining problem, with the state resulting from the

early decisions considered as the inital conditions.

2 Continuous Time Problems

2.1 The Optimization Problem and the Optimality Condition

max
∫ T

0
F (t, y, u)dt

s.t. ẏ = f (t, y, u), y(0) = y0

Define the optimal value function J(t, y) as the best value that can

be obtained starting at time t in state y. Then the value function

J(t, y) obeys the following Bellman equation

−∂J(t, y)

∂t
= max

u
[F (t, y, u) +

∂J(t, y)

∂y
f (t, y, u)]

2.2 Derivation of the Optimality Condition

From the definition of J(t, y), we have:

J(t0, y0) = max
u

∫ T

t0
F (t, y, u)dt
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s.t. ẏ = f (t, y, u), y(0) = y0

The value function can be rewritten as

J(t0, y0) = max
u

[∫ t0+∆t

t0
Fdt +

∫ T

t0+∆t
F

]

where ∆t is taken to be very small and positive. The control function

u(t), t0+∆t ≤ t ≤ T , should be optimal for the problem begining at

t0 +∆t in state y(t0 +∆t) = y0 +∆y. The state y(t0 +∆t) depends

on the state y0 and the control function u(t) chosen over the period

t0 ≤ t ≤ t0 + ∆t. Now we rewrite J(t0, y0) as

J(t0, y0) = max
u︸ ︷︷ ︸

t0≤t≤t0+∆t




∫ t0+∆t

t0
Fdt + max

u︸ ︷︷ ︸
t0+∆t≤t≤T

∫ T

t0+∆t
F




s.t. ẏ = f (t, y, u), y(t0 + ∆t) = y0 + ∆y

Or equivalently

J(t0, y0) = max
u︸ ︷︷ ︸

t0≤t≤t0+∆t

[∫ t0+∆t

t0
Fdt + J(t0 + ∆t, y0 + ∆y)

]

Assume that J(t, y) is twice continuously differentiable. Using Taylor

expansion, we have

J(t0, y0) = max
u


F (t0, y0, u)∆t + J(t0, y0) +

∂J(t0, y0)

∂t
∆t

+
∂J(t0, y0)

∂y
∆y + h.o.t.




Dividing through by ∆t and letting ∆t → 0 gives the above opti-

mality condition.

21



2.3 Infinite-Horizon Autonomous Problems

The infinite horizon autonomous problem:

max
∫ ∞
0

e−rtG(y, u)dt

s.t. ẏ = f (y, u), y(0) = y0

Then

J(t0, y0) = max
u

∫ ∞
t0

e−rt0G(y, u)dt

= e−rt0 max
u

∫ ∞
t0

er(t−t0)G(y, u)dt

Note that the value of the integral on the RHS depends on the initial

state, but is independent of the inital time. Let the current value

function be

V (y0) = max
u

∫ ∞
t0

er(t−t0)G(y, u)dt

Then

J(t, y) = e−rtV (y),
∂J(t, y)

∂t
= −re−rtV (y)

∂J(t, y)

∂y
= e−rtV ′(y)

Then we have a simpler form of the optimality condition (Bellman

equation)

rV (y) = max
u

[G(y, u) + V ′(y)f (y, u)]

2.4 An Example

max
∫ ∞
0

e−ρt ln c(t), ρ > 0

s.t. k̇(t) = rk(t)− c(t), k(0) = k0 given
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3 Discrete Time Problems

3.1 The Optimization Problem and Bellman Equation

The maximization problem

max
ut

T∑

t=0
Ft(yt, ut)

s.t. yt+1 = ft(yt, ut), y0 given, t = 0, 1, 2, ..., T

Define the value function associated with the maximization problem

starting from time t with initial state yt as

J(t, yt) = max
us

T∑

s=t
Fs(ys, us)

s.t. yt+1 = ft(yt, ut), t = 0, 1, 2, ..., T

The value function can be rewritten as a Bellman equation

Jj+1(yT−j) = max
uT−j

[FT−j(yT−j, uT−j) + Jj(yT−j+1)]

subject to yT−j+1 = fT−j(yT−j, uT−j), where yT−j given and j =

0, 1, ..., T

The Bellman equation allows us to work backward and solve the

maximization problem recursively. The solutions are uT−j = hT−j(yT−j)

and yT−j+1 = gT−j(yT−j).

3.2 Discounted Dynamic Programming Problems

The maximization problem

max
ut

T∑

t=0
βtG(yt, ut)

s.t. yt+1 = f (yt, ut), y0 given

23



The corresponding Bellman equation is

Jj+1(yT−j) = max
uT−j

[
βT−jG(yT−j, uT−j) + Jj(yT−j+1)

]

Now define the current value function

Vj+1(yT−j) = βj−TJj+1(yT−j)

Then we rewrite the Bellman equation as

Vj+1(yT−j) = max
uT−j

[G(yT−j, uT−j) + βVj(yT−j+1)]

subject to yT−j+1 = f (yT−j, uT−j) and yT−j given. More compactly,

the above equation can be rewritten as

Vj+1(y) = max
u

[G(y, u) + βVj(ỹ)]

subject to ỹ = f (y, u) and y given. Under particular conditions (G

is concave and bounded and the set {yt+1, yt, ut : yt+1 ≤ f (yt, ut)}
for admissible ut is convex and compact), starting from any bounded

and continuous initial V0, Vj converges to V as j → ∞, where

V = limj→∞ Vj. That is,

V (y) = max
u

[G(y, u) + βV (ỹ)]

where ỹ = f (y, u). The limiting value function V is the optimal

value function for the following infinite horizon problem

max
∞∑
t=0

βtG(yt, ut)

s.t. yt+1 = f (yt, ut), y0 given

There is a unique and time-invariant optimal policy of the form ut =

h(yt). The value function V is differentiable with

V ′(y) =
∂G

∂y
[y, h(y)] + β

∂f

∂y
[y, h(y)]V ′(f [y, h(y)])

This is the formula of Benveniste and Scheinkman (Econometrica,

1979).
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3.3 Discounted Stochastic Dynamic Programming Problems

The maximization problem

max E0

∞∑
t=0

βtG(yt, ut)

s.t. yt+1 = f (yt, ut, εt), y0 given

where Et(x) denotes the mathematical expectation of a random vari-

able x (given information known at time t) and t is a sequence of inde-

pendently and identically distributed random variables. The Bellman

equation corresponding to this problem is

V (y) = max
u
{G(y, u) + βE [V (ỹ)|y]} .

3 Application: Saving and Optimal Growth

3.1 Saving under Certainty

Consider the problem of a consumer who seeks to maximize
∞∑
t=0

βtu(ct), 0 < β < 1

s.t. At+1 = Rt(At + yt − ct), A0 given

where At is nonlabor wealth at the beginning of time t, yt is exoge-

nously given labor income at time t, Rt is one-period gross rate of

return on nonlabor wealth and ct is consumption at time t. Assume

that yt = λyt−1 (λ is the growth rate of income), Rt = R > 0 for

all t and R > λ > 0. To rule out a strategy of infinite consump-

tion supported by unbounded borrowing, the following isoperimetric

condition is imposed:
∞∑

j=0
R−jct+j = At +

∞∑
j=0

R−jyt+j = At +
∞∑

j=0
(λR−1)jyt
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Define the state variables as (At, yt, Rt−1) and the control variable as

ut = R−1
t At+1 = At + yt− ct. Then At+1 = Rtut. Bellman equation

for this problem is

V (At, yt, Rt−1) = max
ut
{u(At + yt − ut) + βV (utRt, yt+1, Rt}

Then the first-order condition is

−u′(ct) + βRtu
′(ct+1) = 0

Suppose that u(ct) = ln ct, then we have ct+j = (βR)jct. Then the

above isoperimetric condition implies

ct = (1− β)


At +

yt

1− λR−1




where λR−1 < 1.

3.2 Optimal Growth

An agent aims to maximize
∞∑
t0

βtu(ct), 0 < β < 1

s.t. ct + kt+1 = f (kt), k0 > 0 given

where u(ct) = ln ct and f (kt) = Akα
t (A > 0, 0 < α < 1). Define

the state variable as kt and the control variable as kt+1, then Bellman

equation for this problem is

V (kt) = max
kt+1

{u(Akα
t − kt+1) + βV (kt+1)}

Then the first-order condition is

− 1

Akα
t − kt+1

+ βV ′(kt+1) = 0

Now we use guess-and-verify method to solve this problem. [There

are two classes of specifications of preferences and constraints for
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which this method can be used: (a) quadratic preferences and lin-

ear constraints and (b) logarithmic preferences and Cobb-Douglass

constraints.] We make the guess

V (k) = E + F ln k

where E and F are undetermined coefficients. Then the first-order

condition implies

k̃ =


 βF

1 + βF


 Akα

Substituting this into Bellman equation gives

F =
α

1− αβ

E = (1− β)−1

ln A(1− αβ) +


 αβ

1− αβ


 ln Aαβ




Note that kt converges to k∞ = (Aαβ)1/(1−α) as t → ∞ for any

initial value k0.

3.3 Stochastic Optimal Growth

A planner seeks to maximize

E0

∞∑
t0

βt ln(ct), 0 < β < 1

s.t. ct + kt+1 = Akα
t θt, k0 > 0 given

where A > 0 and 0 < α < 1. Assume that ln θt is an independently

and identically distributed random variable with normal distribution,

N(0, σ2). Define the state variables as (kt, θt) and the control variable

as kt+1, then Bellman equation for this problem is

V (kt, θt) = max
kt+1

{u(Akα
t θt − kt+1) + βE[V (kt+1, θt+1)|kt, θt}
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Then the first-order condition is

− 1

Akα
t − kt+1

+ βV ′(kt+1) = 0

Guess that the value function is

V (k, θ) = E + F ln k + G ln θ

where E, F and G are undetermined coefficients. Then the optimal

policy rule is

kt+1 = Aαβkα
t θt.
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